Involvement of medullary dorsal horn glial cell activation in mediation of masseter mechanical allodynia induced by experimental tooth movement.

نویسندگان

  • Xiao-Dong Liu
  • Jing-Jie Wang
  • Lei Sun
  • Liang-Wei Chen
  • Zhi-Ren Rao
  • Li Duan
  • Rong Cao
  • Mei-Qing Wang
چکیده

OBJECTIVE To investigate the involvement of microglial and astrocytic activation in the medullary dorsal horn (MDH) during the mediation of masseter area allodynia induced by experimental tooth movement (ETM). DESIGN Five groups of adult Sprague-Dawley rats (n=60) were divided into control (CON), minocycline (MIN), ETM, and 10mg/kg or 30mg/kg MIN plus ETM (METM) groups. The upper-first-molar was moved mesially for rats in ETM and METM groups. Rats were pre-injected with minocycline in the MIN (30mg/kg) and METM (10mg/kg or 30mg/kg) groups. Pressure pain threshold (PPT) in masseter area was tested from day 0 to 14 for all 5 groups. Immunohistochemistry against OX42 (microglial marker) or GFAP (astrocytic maker) in the MDH was examined at days 1, 3, 7 and 14 for CON, MIN and 30mg/kg METM groups. RESULTS Baseline PPT was expectedly seen in either CON or MIN groups, masseter mechanical allodynia was detected in the ETM group from day 4 to 13 (P<0.05). OX42 expression level at days 1, 3 and 7, and GFAP expression level at days 3, 7 and 14 were higher in ETM (P<0.05), but not in 30mg/kg METM, than in CON group. Minocycline reduced activation of microglia and astrocytes, and significantly attenuated the development of masseter mechanical allodynia in this model. CONCLUSIONS These results indicate that mechanical allodynia in the masseter area induced by ETM can be attenuated by minocycline. Activation of microglia, possibly together with subsequent activation of astrocytes, seems to contribute to masseter mechanical allodynia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction

Background The mechanisms underlying tooth pulp hypersensitivity associated with masseter muscle hyperalgesia remain largely underinvestigated. In the present study, we aimed to determine whether masseter muscle contraction induced by daily electrical stimulation influences the mechanical head-withdrawal threshold and genioglossus electromyography activity caused by the application of capsaicin...

متن کامل

Gabapentin prevents oxaliplatin-induced central sensitization in the dorsal horn neurons in rats

Objective(s): The present study aims to study the alteration of glutamatergic transmission in the dorsal horn neurons and the effect of gabapentin on oxaliplatin-induced neuropathic pain in rats. Materials and Methods: Oxaliplatin (5 mg/kg) or saline was administered to adult male Sprague-Dawley rats.  Gabapentin (60 mg/kg, IP) or vehicle was injected daily. Mechanical allodynia was assessed us...

متن کامل

Impaired glial glutamate uptake induces extrasynaptic glutamate spillover in the spinal sensory synapses of neuropathic rats.

Glial cell dysfunction and excessive glutamate receptor activation in spinal dorsal horn neurons are hallmark mechanisms of pathological pain. The way in which glial cell dysfunction leads to excessive glutamate receptor activation in the spinal sensory synapses remains unknown. We and others recently reported the downregulation of glial glutamate transporter (GT) protein expression in the spin...

متن کامل

Blockade of glycine transporter (GlyT) 2, but not GlyT1, ameliorates dynamic and static mechanical allodynia in mice with herpetic or postherpetic pain.

Glycine is an inhibitory neurotransmitter in the spinal dorsal horn and its extracellular concentration is regulated by glial glycine transporter (GlyT) 1 and neuronal GlyT2. This study was conducted to elucidate the effects of intrathecal injections of GlyT1 and GlyT2 inhibitors on two distinct types of mechanical allodynia, dynamic and static allodynia, in mice with herpetic or postherpetic p...

متن کامل

Wen-Luo-Tong Prevents Glial Activation and Nociceptive Sensitization in a Rat Model of Oxaliplatin-Induced Neuropathic Pain

One of the main dose-limiting complications of the chemotherapeutic agent oxaliplatin (OXL) is painful neuropathy. Glial activation and nociceptive sensitization may be responsible for the mechanism of neuropathic pain. The Traditional Chinese Medicine (TCM) Wen-luo-tong (WLT) has been widely used in China to treat chemotherapy induced neuropathic pain. However, there is no study on the effects...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Archives of oral biology

دوره 54 12  شماره 

صفحات  -

تاریخ انتشار 2009